Exercise 24

Solve the initial-value problem.

$$4y'' + 4y' + 3y = 0$$
, $y(0) = 0$, $y'(0) = 1$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y = e^{rx}$.

$$y = e^{rx}$$
 \rightarrow $\frac{dy}{dx} = re^{rx}$ \rightarrow $\frac{d^2y}{dx^2} = r^2e^{rx}$

Plug these formulas into the ODE.

$$4(r^2e^{rx}) + 4(re^{rx}) + 3(e^{rx}) = 0$$

Divide both sides by e^{rx} .

$$4r^2 + 4r + 3 = 0$$

Solve for r.

$$r = \frac{-4 \pm \sqrt{16 - 4(4)(3)}}{2(4)} = \frac{-4 \pm \sqrt{-32}}{2(4)} = -\frac{1}{2} \pm \frac{i}{\sqrt{2}}$$
$$r = \left\{-\frac{1}{2} - \frac{i}{\sqrt{2}}, -\frac{1}{2} + \frac{i}{\sqrt{2}}\right\}$$

Two solutions to the ODE are $e^{(-1/2-i/\sqrt{2})x}$ and $e^{(-1/2+i/\sqrt{2})x}$. By the principle of superposition, then,

$$y(x) = C_1 e^{(-1/2 - i/\sqrt{2})x} + C_2 e^{(-1/2 + i/\sqrt{2})x}$$

$$= C_1 e^{-x/2} e^{-ix/\sqrt{2}} + C_2 e^{-x/2} e^{ix/\sqrt{2}}$$

$$= e^{-x/2} (C_1 e^{-ix/\sqrt{2}} + C_2 e^{ix/\sqrt{2}})$$

$$= e^{-x/2} \left[C_1 \left(\cos \frac{x}{\sqrt{2}} - i \sin \frac{x}{\sqrt{2}} \right) + C_2 \left(\cos \frac{x}{\sqrt{2}} + i \sin \frac{x}{\sqrt{2}} \right) \right]$$

$$= e^{-x/2} \left[(C_1 + C_2) \cos \frac{x}{\sqrt{2}} + (-iC_1 + iC_2) \sin \frac{x}{\sqrt{2}} \right]$$

$$= e^{-x/2} \left(C_3 \cos \frac{x}{\sqrt{2}} + C_4 \sin \frac{x}{\sqrt{2}} \right).$$

Differentiate the general solution.

$$y'(x) = -\frac{1}{2}e^{-x/2}\left(C_3\cos\frac{x}{\sqrt{2}} + C_4\sin\frac{x}{\sqrt{2}}\right) + e^{-x/2}\left(-\frac{C_3}{\sqrt{2}}\sin\frac{x}{\sqrt{2}} + \frac{C_4}{\sqrt{2}}\cos\frac{x}{\sqrt{2}}\right)$$

Apply the initial conditions to determine C_1 and C_2 .

$$y(0) = C_3 = 0$$

 $y'(0) = -\frac{C_3}{2} + \frac{C_4}{\sqrt{2}} = 1$

Solving this system of equations yields $C_3 = 0$ and $C_4 = \sqrt{2}$. Therefore, the solution to the initial value problem is

$$y(x) = \sqrt{2}e^{-x/2}\sin\frac{x}{\sqrt{2}}.$$

Below is a graph of y(x) versus x.

