Exercise 24

Solve the initial-value problem.

$$
4 y^{\prime \prime}+4 y^{\prime}+3 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
4\left(r^{2} e^{r x}\right)+4\left(r e^{r x}\right)+3\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
4 r^{2}+4 r+3=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{-4 \pm \sqrt{16-4(4)(3)}}{2(4)}=\frac{-4 \pm \sqrt{-32}}{2(4)}=-\frac{1}{2} \pm \frac{i}{\sqrt{2}} \\
r=\left\{-\frac{1}{2}-\frac{i}{\sqrt{2}},-\frac{1}{2}+\frac{i}{\sqrt{2}}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(-1 / 2-i / \sqrt{2}) x}$ and $e^{(-1 / 2+i / \sqrt{2}) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{(-1 / 2-i / \sqrt{2}) x}+C_{2} e^{(-1 / 2+i / \sqrt{2}) x} \\
& =C_{1} e^{-x / 2} e^{-i x / \sqrt{2}}+C_{2} e^{-x / 2} e^{i x / \sqrt{2}} \\
& =e^{-x / 2}\left(C_{1} e^{-i x / \sqrt{2}}+C_{2} e^{i x / \sqrt{2}}\right) \\
& =e^{-x / 2}\left[C_{1}\left(\cos \frac{x}{\sqrt{2}}-i \sin \frac{x}{\sqrt{2}}\right)+C_{2}\left(\cos \frac{x}{\sqrt{2}}+i \sin \frac{x}{\sqrt{2}}\right)\right] \\
& =e^{-x / 2}\left[\left(C_{1}+C_{2}\right) \cos \frac{x}{\sqrt{2}}+\left(-i C_{1}+i C_{2}\right) \sin \frac{x}{\sqrt{2}}\right] \\
& =e^{-x / 2}\left(C_{3} \cos \frac{x}{\sqrt{2}}+C_{4} \sin \frac{x}{\sqrt{2}}\right) .
\end{aligned}
$$

Differentiate the general solution.

$$
y^{\prime}(x)=-\frac{1}{2} e^{-x / 2}\left(C_{3} \cos \frac{x}{\sqrt{2}}+C_{4} \sin \frac{x}{\sqrt{2}}\right)+e^{-x / 2}\left(-\frac{C_{3}}{\sqrt{2}} \sin \frac{x}{\sqrt{2}}+\frac{C_{4}}{\sqrt{2}} \cos \frac{x}{\sqrt{2}}\right)
$$

Apply the initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
y(0) & =C_{3}=0 \\
y^{\prime}(0) & =-\frac{C_{3}}{2}+\frac{C_{4}}{\sqrt{2}}=1
\end{aligned}
$$

Solving this system of equations yields $C_{3}=0$ and $C_{4}=\sqrt{2}$. Therefore, the solution to the initial value problem is

$$
y(x)=\sqrt{2} e^{-x / 2} \sin \frac{x}{\sqrt{2}} .
$$

Below is a graph of $y(x)$ versus x.

